Evaluating Various Linguistic Features on Semantic Relation Extraction
نویسندگان
چکیده
Machine learning approaches for Information Extraction use different types of features to acquire semantically related terms from free text. These features may contain several kinds of linguistic knowledge: from orthographic or lexical to more complex features, like PoStags or syntactic dependencies. In this paper we select four main types of linguistic features and evaluate their performance in a systematic way. Despite the combination of some types of features allows us to improve the fscore of the extraction, we observed that by adjusting the positive and negative ratio of the training examples, we can build high quality classifiers with just a single type of linguistic feature, based on generic lexico-syntactic patterns. Experiments were performed on the Portuguese version of Wikipedia.
منابع مشابه
Multi-view Bootstrapping for Relation Extraction by Exploring Web Features and Linguistic Features
Binary semantic relation extraction from Wikipedia is particularly useful for various NLP and Web applications. Currently frequent pattern miningbased methods and syntactic analysis-based methods are two types of leading methods for semantic relation extraction task. With a novel view on integrating syntactic analysis on Wikipedia text with redundancy information from the Web, we propose a mult...
متن کاملVariation and Semantic Relation Interpretation: Linguistic and Processing Issues
Studies in linguistics define lexico-syntactic patterns to characterize the linguistic utterances that can be interpreted with semantic relations. Because patterns are assumed to reflect linguistic regularities that have a stable interpretation, several software implement such patterns to extract semantic relations from text. Nevertheless, a thorough analysis of pattern occurrences in various c...
متن کاملRelation Extraction from Web Contents with Linguistic and Web Features
With the advent of the Web and the explosion of available textual data, interest in techniques for machines to understand unstructured text has been growing. Recent attention to map textual content into a structured knowledge base through automatically harvesting semantic relations from unstructured text has encouraged Data Mining and Natural Language Processing researchers to develop algorithm...
متن کاملAn Exploration of the Linguistic Knowledge for Semantic Relation Extraction in Spanish
A common strategy for Question Answering systems uses high quality ontologies or databases in order to efficiently answer questions. Some approaches to build or enrich these databases rely on machine learning classifiers for obtaining semantically related terms from unstructured text. These classifiers are based on features that may contain several kinds of linguistic knowledge: from orthograph...
متن کاملExtraction of Drug-Drug Interaction from Literature through Detecting Linguistic-based Negation and Clause Dependency
Extracting biomedical relations such as drug-drug interaction (DDI) from text is an important task in biomedical NLP. Due to the large number of complex sentences in biomedical literature, researchers have employed some sentence simplification techniques to improve the performance of the relation extraction methods. However, due to difficulty of the task, there is no noteworthy improvement in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011